
DEXAGOGO
Random outings from a chaotic mind

HOME ABOUT INDEX LINKOGRAPHY JAVASCRIPT TAGS DISCUSSIONS

Really easy field validation
Here's a form validation script that is very easy to use.

Current Version: 1.5.4.1 - 06 Jan 2007 - Demo / Download

Instructions

The basic method is to attach to the form's onsubmit event, read out all the form elements'
classes and perform validation if required. If a field fails validation, reveal field validation
advice and prevent the form from submitting.

Include the javascript libraries:

You write elements like this:

passing the validation requirements in the class attribute.

You then activate validation by passing the form or form's id attribute like this:

It has a number of tests built-in but is extensible to include your custom validation checks.

The validator also avoids validating fields that are hidden or children of elements hidden by
the CSS property display:none. This way you can give a field the class of 'required' but it's
only validated if it is visible on the form. The demo illustrates what I am talking about

Options

Here's the list of classes available to add to your field elements:

required (not blank)

validate-number (a valid number)

<script src="prototype.js" type="text/javascript"></script>

<script src="validation.js" type="text/javascript"></script>

<input class="required validate-number" id="field1" name="field1" />

<script type="text/javascript">

 new Validation('form-id'); // OR new Validation(document.forms[0]);

</script>

validate-digits (digits only)

validate-alpha (letters only)

validate-alphanum (only letters and numbers)

validate-date (a valid date value)

validate-email (a valid email address)

validate-url (a valid URL)

validate-date-au (a date formatted as; dd/mm/yyyy)

validate-currency-dollar (a valid dollar value)

validate-selection (first option e.g. 'Select one...' is not selected option)

validate-one-required (At least one textbox/radio element must be selected in a group -

see below*)

*To use the validate-one-required validator you must first add the class name to only
one checkbox/radio button in the group (last one is probably best) and then place all the
input elements within a parent element, for example a div element. That way the library can
find all the checkboxes/radio buttons to check and place the validation advice element at the
bottom of the parent element to make it appear after the group of checkboxes/radio buttons.

When the validation object is initialised you can pass the option {stopOnFirst : true} to
enable the stop on first validation failure behaiour. The demo above has this set to false which
is the default. If set to true only the first validation failure advice will be displayed when the
form is submitted instead of all at once.

You can also pass the option {immediate : true} to enable field valiation when leaving
each field. That is on the onblur event for all the form elements.

By default the library will add an event listener to the form's onsubmit event and stop the
event if the validation fails. If you pass the option {onSubmit : false} it wont do that.

This way you can call the validate function manually within your own javascript.

By default the library will focus on the first field that contains an error. If you pass the option
{focusOnError : false} it wont do that.

You can also pass the option {useTitles : true} to make the field validators use the form
elements' title attribute value as the error advice message.

You can set callbacks by using the options
{onFormValidate : yourFunction, onElementValidate : yourFunction}.

onFormValidate is called after form validation takes place and takes two arguments: the
validation result (true or false) and a reference to the form. OnElementValidate is called after
each form element is validated and also takes 2 arguments: the validation result (true or false)
and a reference to the form element.

Instead of using the error message in the validator you can create your own validation advice

<script type="text/javascript">

 new Validation('form-id',{stopOnFirst:true});

</script>

page element. Now when the script is creating the advice element it first looks for an element
with an id matching 'advice-' + validation-class-name + '-' + element.id

and if not found then one matching 'advice-' + element.id . If your form element
does not have an id attribute then match the name attribute. If it finds an element it will make
that one appear. See the 'Donation' field in the demo for an example. If you make a custom
validation advice element make sure you set the style to display : none .

Also if you reference the effects.js file from Scriptaculous in your page head, it'll use a fade-in
effect for the validation advice.

CSS Hooks

As well as the validation css classes above, the validation library uses CSS classes to indicate
validation status:

validation-failed and validation-passed

The validation advice element has a class of validation-advice and an id matching the
following pattern

'advice-' + validation-class-name + '-' + element.id

so if the field ' birthdate' uses the ' validate-date' validation class then the validation
advice element will have an id of ' advice-validate-date-birthdate'.

Javascript API

By default the class attaches an event observer to the form's onsubmit event. If you prefer to
do the form submit via javascript yourself you can still validate the form like this:

The instance method, validate(), will return true or false.

The class has an instance function which resets all the field validation:

Note that it doesn't reset the form, just the validation.

<script src="effects.js" type="text/javascript"></script>

<script type="text/javascript">

 var valid = new Validation('form-id', {onSubmit:false});

 var result = valid.validate();

</script>

<script type="text/javascript">

 var valid = new Validation('form-id');

 valid.reset();

</script>

The Validation class also has some static methods that can be used independantly.

This validates the field (or field with that id), using all validation classes present. You can also
pass the option {useTitle : true} to make the field validator use the form element's title
attribute value as the error advice message.

You can run a specific validation test on a field or field value by doing this:

To add your own validator do this:

or this:

The first example above includes a function as the third argument. The function enables you
to write your own custom validation. The options argument is optional. The second example
the third argument has become the options argument. Validator options can be used to
perform common validation options without the need to write them into a function. Multiple
options can be combined to create a complex validator and they can also enhance your
custom validation function. Here are the available options and example usage below:

For example here's one of the in-built ones:

Validation.validate([element OR element id] [, options])

Validation.get('validator-name').test(value [, element]);

Validation.add('class-name', 'Error message text', function(value [, element]) {

 return /* do validation here */

}, options);

Validation.add('class-name', 'Error message text', options);

Validation.add('class-name', 'Error message text', {

 pattern : new RegExp("^[a-zA-Z]+$","gi"), // only letter allowed

 minLength : 6, // value must be at least 6 characters

 maxLength : 13, // value must be no longer than 13 characters

 min : 5, // value is not less than this number

 max : 100, // value is not more than this number

 notOneOf : ['password', 'PASSWORD'], // value does not equal anything in this array

 oneOf : ['fish','chicken','beef'], // value must equal one of the values in this array

 is : '5', // value is equal to this string

 isNot : 'turnip', //value is not equal to this string

 equalToField : 'password', // value is equal to the form element with this ID

 notEqualToField : 'username', // value is not equal to the form element with this ID

 include : ['validate-alphanum'] // also tests each validator included in this array of validator keys (there are no sanity checks so beware infinite loops!)

});

And here's a custom one using options:

If you supply a custom function and a combination of options they are all tested and if all are
true the field validates.

When you add a new validator it is added to a static group of validation methods with the class
name as key. You then must use the class in the form elements to use your custom validation
function.

To make adding mupltiple custom validators easier you can use
Validation.addAllThese() like this:

You pass an array, where each element of the array is an array with 3 or 4 elements:
[className, error, function, options] or [className, error, options]

Support

Please submit your questions, suggestions, patches, bugs, extra validators and such to the
Dexgogo group on Google Groups .

Demo & Download

You can view the demo to see some examples or the demo can be downloaded as a zip file
under the MIT License, same as Prototype and Scriptaculous.

Validation.add('validate-alpha', 'Please use letters only (a-z) in this field.', function (v) {

 return Validation.get('IsEmpty').test(v) || /^[a-zA-Z]+$/.test(v)

});

Validation.addAllThese('validate-password', 'Your password must be more than 6 characters and not be 'password' or the same as your name', {

 minLength : 7,

 notOneOf : ['password','PASSWORD','1234567','0123456'],

 notEqualToField : 'username'

});

Validation.addAllThese([

 ['required', 'This is a required field.', function(v) {

 return !Validation.get('IsEmpty').test(v);

 }],

 ['validate-number', 'Please use numbers only in this field.', function(v) {

 return Validation.get('IsEmpty').test(v) || !isNaN(v);

 }],

 ['validate-digits', 'Please use numbers only in this field.', function(v) {

 return Validation.get('IsEmpty').test(v) || !/[^d]/.test(v);

 }]

]);

Change Log

Version 1.5.4.1

Oops, left a trailing comma on an array... thanks Ed !

Version 1.5.4

Added 'validate-selection' for HTML select elements - validation fails of first option is selected

value
Added Validator options for creating validators - good for custom validation combinations if you

don't want to write a javascript function - see documentation above.

Version 1.5.3.1

Fixed problem getting the advice elements caused by change in the behaviour of the Protype

$() function - specifically the return value when an element is not found.

Version 1.5.3

Added small change to better support radio/checkbox elements. The validation advice

message is shown at the bottom of the parent element of all the radio/checkboxes; i.e. at the

end of the group of elements.
Added example 'validate-one-required' validator for checkbox/radio elements

Version 1.5.2

Added 2 callback options: onFormValidate and onElementValidate, thanks for the idea John
Farrar

Fixed URL validator,thanks Bruno

Fixed advice text on number validators, thanks Ade
Fixed number validator validating space as valid, thanks Rob McDonagh

Changed isEmpty validator so that a value of only whitespace is no longer considered empty

Version1.5.1

Oops

Version 1.5

Added support for using the title attribute as the error advice text as per xav's idea

Added support for forms with elements with no id attributes
The field element is now passed as a reference to the validate function to enable more

complex validators

Added support for multiple form instances for the focusOnError option
Added URL validator from Marcus Bointon

Improved date-au validator from Tanvir

Started using Insertion.After from prototype for compatibility reasons as per xav's suggestion
Completed some code reorganisation to support future directions

Version 1.4

Custom field validation advice as per Sidney's idea

Fixed internal check property name - make consistant with general object property notation

i.e. camelcase it
Behaviour change: Error advice nodes are now hidden instead of removed when not

needed

Version 1.3

Added reset function as per Paul Shannon's idea
Added focusOnError option, thanks Ted Wise for the idea and some demo code

Fixed a typo, thanks Analgesia!

Version 1.2.1

Removed $ shortcuts from main code body (There's a worry on the mailing list about polluting

the global namespace with an alphabet of $ functions. So, they are commented out in code,

you can uncomment them if you want them)

Version 1.2

New 'immediate:true' option to add onblur validation to form elements. Thanks Mike Rumble !

Version 1.1

Added new function Validator.addAllThese()
Validator now respects hidden form elements

code tidy-up

Updated demo

Linkography

Scriptaculous Scriptaculous home page

Dexgogo group on Google Groups Join the Dexagogo group and spin yarns about your l337
javascript skillz

MIT License

thanks Ed on the Dexagogo Google group
Bruno

Ade

Rob McDonagh
Marcus Bointon Marcus Bointon

Sidney's

Paul Shannon's Pauls home page
Mike Rumble Mike's home page

Tags

javascript
prototype

NICE PEOPLE

Adrian Lynch Rosemary Lynch Nathan Tetlaw Kim Davies Dan Woods Port80

AND OF COURSE

 My del.icio.us flickr

PROFESSIONAL STUFF

 This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

http://tetlaw.id.au - Powered by Spring CMS

